
Happy Birthday, Joe!

1Thursday, June 14, 2012



2Thursday, June 14, 2012



3Thursday, June 14, 2012



 http://www.anti-powerpoint-party.com
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Punchline
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Effective theory for deconfinement, near Tc.

There’s always some effective theory.

Only possible because of lattice simulations

Moderate coupling. Versus AdS/CFT = strong coupling
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Lattice: what you know
“Pure” SU(3), no quarks.  Peak in (e-3p)/T4, just above Tc.  
Borsanyi, Endrodi, Fodor, Katz, & Szabo, 1204.6184

long tail?

↑ Tc 2.5 Tc ↑

e− 3p

T 4
↑
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Lattice: what you should know
Tc→4 Tc:
For pressure, leading
corrections to ideality, T4, 
are not a bag constant, T0,
but ~ T2 - ? Take as given.

e− 3p

T 4

T 2

T 2
c

↑

Borsanyi +... 1204.6184

In 2+1 dim.s, T3 & T2, not T
Caselle +... 1111.0580
Not a gluon “mass”

10 Tc ↑↑ Tc
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Moderate coupling, even at Tc

QCD coupling is not so big at Tc, α(2πTc) ~ 0.3 (runs like α(2πT) )
HTL perturbation theory at NNLO: Andersen, Leganger, Strickland, & Su, 1105.0514

Assume: moderate
coupling down to Tc

versus AdS/CFT

e− 3p

T 4

T 2

T 2
c

↑
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The competition:
models for the “s”QGP

Tc to ~ 4 Tc
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Unrelated
Massive gluons: Peshier, Kampfer, Pavlenko, Soff ’96...Castorina, Miller, Satz 1101.1255
                                                                             Castorina, Greco, Jaccarino, Zappala 1105.5902 

p(T ) = #T 4 −m2 T 2 + . . .
Mass decreases pressure, so adjust
m(T) to fit p(T) with three parameters.

Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Veff (T ) ∼ m2!∗! + T log f(!∗!)Effective potential of Polyakov loops.
Potential has five parameters

m2 = T 4
3∑

i=0

ai(Tc/T )i

AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, φ, to fit pressure.
Only infinite N, two parameters V (φ) ∼ cosh(γφ) + b φ2
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Related

Linear model of Wilson lines: Vuorinen & Yaffe, ph/0604100; 
   de Forcrand, Kurkela, & Vuorinen, 0801.1566; Zhang, Brauer, Kurkela, & Vuorinen, 1104.0572

Z is not unitary; four parameters.  ‘t Hooft loop approximate.

Above models comparable to our model with one free parameter. 

Deriving the effective theory from QCD:

Monopoles: Liao & Shuryak, ... + 0804.0255. 

Dyons: Diakonov & Petrov, ... + 1011.5636: explain 1st order for SU(N) > 4 & G(2)
            
Bions: ... + Poppitz, Schaefer, & Unsal 1205.0290: term ~ q(1-q) about SUSY limit

Veff (Z) = m2 trZ†Z+ κ (detZ+ c.c.) + λ tr(Z†Z)2 + . . .
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Preliminaries
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Order parameters

T→ 
Tc ↑ 

<l>↑

Thermal Wilson line: 

Under global Z(3) rotations:

Wilson line gauge variant.  
Trace = Polyakov loop gauge invariant

Eigenvalues of L are also gauge invariant: 
basic variables of matrix model

〈 loop 〉 measures partial ionization of color:
when 0 < 〈 loop 〉 < 1 , “semi”-QGP

(Loop models: confinement = Z(3) symmetry
Matrix models: confinement =
                           complete eigenvalue repulsion)

L = P eig
∫ 1/T
0 A0 dτ

L → e2πi/3 L

! =
1

3
trL
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Matrix model
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Matrix model: SU(2)

Simple approximation: constant A0 ~ σ3 .

For SU(2), single field q  

Z(2) symmetry: q → 1 - q,  L → - L

Perturbative vacua: q = 0 and 1, L = ± 1 

Point halfway in between: q = ½ :
Confined vacuum, Lc, l = 0 .

Acl
0 =

πT

g
q σ3

Wilson line L: Polyakov loop l:

! = cos(πq)L(q) =

(
eiπq 0
0 e−iπq

)

Lc =

(
i 0
0 −i

)
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Perturbative potential for q

One loop order: potential (Gross, RDP, & Yaffe, ’81)

q →

Vpert(q) ↑

10x x

x

x xx Re l→
q = 0q = 1 q =

1
2

1 -1  0 

Classically, no potential:

Vpert(q) =
4π2

3
T 4 q2(1− q)2
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Non-perturbative potential
By fiat, add non-perturbative terms, to get <q> ≠ 0 :

T < Tc:  〈q〉 = ½ →
1q →0x x

xVeff (q) ↑

q → 1

T >> Tc:  〈q〉 = 0,1 →

0x x

xVeff (q) ↑

Veff (q) = Vpert(q) + Vnon(q)
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Cartoons 
Consider:

0.2 0.4 0.6 0.8 1.0

!0.015

!0.010

!0.005

⇓ T > Tc: semi QGP

xx

Veff ↑

⇓ T >> Tc: complete QGP

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06

x x

Veff ↑

q →

q →

0.2 0.4 0.6 0.8 1.0

!0.06

!0.05

!0.04

!0.03

!0.02

!0.01

                T = Tc  =>

x

q →

Veff = q2(1− q)2 − a q(1− q) , a ∼ T 2
c /T 2
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Matrix models, two colors
Zero parameter model: Meisinger, Miller, & Ogilvie, ph/0108009
1 parameter: Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, 1011.3820; 2 parameter: 1205.0137
Effective potential sum of pert. and non-pert. terms:

Vpert(q) =
4π2

3
T 4

(
− 1

20
+ q2(1− q)2

)

                Typical mean field theory:
Pressure:

Start with four parameters: c1, c2, c3, & MIT bag constant B.  
Require: transition at Tc; pressure(Tc) = 0. Two free parameters.  

p(T ) = −Veff (〈q〉)

Vnon(q) =
4π2

3
T 2 T 2

c

(
− c1

5
q(1− q)− c2 q

2(1− q)2 +
c3
15

)
+B T 4

c

d

dq
Veff (q)

∣∣∣∣
q=〈q〉

= 0
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Matrix model, three colors
Fix two parameters by fitting to latent heat and e-3p:

                                                     c1 = .83 , c2 = .55 , c3 = 1.3 , B = (262 MeV)4 .

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

e− 3p

8 T 4
↑

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 

Lattice:
Beinlich, Peikert, & Karsch lat/9608141
Datta & Gupta 1006.0938
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‘t Hooft loop
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T >> Tc T ~ Tc T < Tc

Lattice, A. Kurkela, unpub.’d: 3 colors, loop l complex.  
Distribution of loop shows Z(3) symmetry:

z

Interface tension: take long box.
Each end: distinct but degenerate 
In between: interface, action ~ interface tension, σ:

T > Tc: order-order interface = ‘t Hooft loop: Z ∼ e−σVtr

Re ! ↑

Im ! →
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Success: ‘t Hooft loop
Matrix model works well:
Lattice: de Forcrand, D’Elia, & Pepe, lat/0007034;  de Forcrand & Noth lat/0506005

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

!
/T

2  / 
(N

-1
)

T / TC

Lattice data
GKA

model, SU(2)
model, SU(3)

σ

(N − 1)T 2
↑

Semi-classical⇒

 ⇐  N = 2 

 ⇐ matrix model, N = 3

T→

lattice, N=3 ⇒

5 Tc ↑↑ Tc
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Failure: Polyakov loop

Renormalized Polyakov loop from lattice nothing like matrix model
Model: transition region narrow, to ~ 1.2 Tc; lattice loop wide, to ~ 4.0 Tc.
Does the ren.’d Polyakov loop reflect the eigenvalue distribution?

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

Lattice: Gupta, Hubner,
and Kaczmarek,  0711.2251.

 0.2

 0.4

 0.6

 0.8

 1

 1  1.1  1.2  1.3  1.4  1.5

〈t
r 

L
/3

〉

T / TC

0-param. model

1-param. model

2-param. model

Lattice

↑ Tc 1.5 Tc ↑T→

〈!〉 ↑

 ⇐ 2 parameter
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G(2) gluons: the “law” of 
maximal eigenvalue repulsion
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G(2) group: confinement without a center
Holland, Minkowski, Pepe, & Wiese, lat/0302023...
Exceptional group G(2) has no center, so in principle, no “deconfinement”
With no center, 〈loop7〉 can be nonzero at any T > 0.
Lattice: 1st order transition, 〈l7〉 ~ 0 for T < Tc, 〈l7〉  ≠ 0 for T > Tc: deconfinement!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

P

50
55
60
65
70
75
80

β = 9.7

T<Tc
T>Tc

←     Tc     →

←<l7>→

Welleghausen, 
Wipf, & Wozar 
1102.1900.

0↑ ↑0.4
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Law of maximal eigenvalue repulsion

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

! 7

T / TC

Vnpt
SU7, c2

SU7 = -2
Vnpt

SU7, c2
SU7 = -4

Vnpt
G2 , c2

G2 = 0
Vnpt

G2 , d2
G2 = -0.21

Generically, easy to find 1st order transitions.  Most have 〈l7〉 nonzero below Tc.
To get 〈l7〉 ~ 0 below Tc, must add terms to generate maximal eigenvalue repulsion

←Vnon just G(2) terms
←”SU(7)” models

Vnon just loop7 ↓

←”SU(7)” models↑

←Vnon just loop7
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Predictions for G(2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5  1  1.5  2  2.5  3  3.5  4

(e
-3

p)
 / 

T4

T / TC

Vnpt
SU7, c2

SU7 = -2
Vnpt

SU7, c2
SU7 = -4

Vnpt
G2 , c2

G2 = 0
Vnpt

G2 , d2
G2 = -0.21

Vnon just G(2) terms→

←”SU(7)” models

↓ loop7 

Start with model with 3 parameters
Requiring 〈l7〉 ~ 0 below Tc greatly restricts the possible parameters.
Yields dramatic differences in the behavior of (e-3p)/T4.

↓
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Testing the model: heavy quarks
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0 1 2 3 4 5
0

1

2

3

4

5

ms , GeV

m
u,

d 
, G

eV

logarithmic PL

matrix model

polynomial PL

matrix model w/ bag

Predictions for upper corner of Columbia plot
Add heavy quarks: critical endpoint for deconfinement, Tce.
Matrix model: Tce ~ 0.99 Tc.  Polyakov loop models: Tce ~ 0.90 Tc.
Kashiwa, RDP, & Skokov 1205.0545
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Novel thermodynamics at infinite N
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Gross-Witten transition at infinite N

Solve at N=∞: RDP & Skokov 1206.1329.  Find “critical first order” transition:
Latent heat nonzero ~ N2, and specific heat diverges ~ 1/(T-Tc)3/5

Like femtosphere: ... + Aharony... th/0310825; Dumitru, Lenaghan, RDP, ph/0410294

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

V
ef
f

lN
↑ 0 ↑ 1/2〈!〉 →

Veff (!) ↑

!(T−
c ) = 0

!(T+
c ) =

1

2

At Tc, 2 degenerate minima
But Veff flat between them!

Special to N = ∞:
need to look at N > 40
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Summary
Pure gauge: T: 1.2 to 4.0 Tc, pressure dominated by constant ~ T2 : stringy?

Tests: discrepancy with Polyakov loop; heavy quarks; large N

Need to include quarks!  Is there a single “Tc”?

Standard kinetic theory: strong coupling gives small η and large 
             Majumder, Muller, & Wang, ph/0703082; Liao & Shuryak, 0810.4116

Semi-QGP: naturally small η near Tc: 
σ ~ loop2, but ρ = density ~ loop2 T3:
Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940:

(Relation to anomalous viscosity? Asakawa, Bass, & Muller, ph/0603092 & ph/0608270) 

But energy loss also small:                 for quarks   

η ∼ ρ2

σ
∼ $2

q̂

q̂ ∼ !
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